Triennial Reproduction Symposium: limitations in uterine and conceptus physiology that lead to fetal losses. Academic Article uri icon


  • Conceptus losses in livestock occur throughout gestation. The uterus and the embryo-placenta-fetus play interconnected roles in these losses, the details of which depend on the period of gestation and the species. Studies in sheep and pigs have indicated that the uterine glands are essential for full fertility, based on experiments where gland development was reduced through the use of exogenous hormones. In sheep and cattle, normally the uterus is well able to support more than a single fetus although these species differ in the consequences of multiple births. When 2 conceptuses are present, the placentas of cattle often anastomose, putting 1 fetus at risk if the other is lost. One likely reason this does not occur in sheep is because sheep embryos undergo intrauterine migration, similar to pigs. In pigs, the relatively equidistant separation of conceptuses is likely to be essential for optimizing conceptus survival as is the simultaneous and uniform elongation of blastocysts that occurs during the time of maternal recognition of pregnancy. Other studies in pigs have indicated that the size of the uterus influences litter size and therefore fetal losses. In response to crowded intrauterine conditions in the pig, increased conceptus losses begin to occur between d 30 and 40 of pregnancy, and further losses occur sporadically during later gestation. There is evidence that improved fetal erythropoiesis can reduce these losses. Other studies indicated that profound changes in placental development occurred under crowded intrauterine conditions that may contribute to losses during late gestation. Reductions in placental stroma formation may compromise the ability of the pig placenta to adapt to reduced uterine space. Consistent with this, both hyaluronan and hyaluronidase activity are decreased in the placentas of small compared with large fetuses. These results indicate that improvements in placental stroma formation could improve placental ability to compensate for reduced intrauterine space, resulting in increased placental function and reduced fetal losses during late gestation.

published proceedings

  • J Anim Sci

author list (cited authors)

  • Vallet, J. L., McNeel, A. K., Johnson, G., & Bazer, F. W.

citation count

  • 38

complete list of authors

  • Vallet, JL||McNeel, AK||Johnson, G||Bazer, FW

publication date

  • July 2013