A novel wavelet-based index to detect epileptic seizures using scalp EEG signals.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
In this paper, we propose a novel wavelet-based algorithm for the detection of epileptic seizures. The algorithm is based on the recognition of rhythmic activities associated with ictal states in surface EEG recordings. Using a moving-window analysis, we first decomposed each EEG segment into a wavelet packet tree. Then, we extracted the coefficients corresponding to the frequency band of interest defined for rhythmic activities. Finally, a normalized index sensitive to both the rhythmicity and energy of the EEG signal was derived, based on the resulting coefficients. In our study, we evaluated this combined index for real-time detection of epileptic seizures using a dataset of approximately 11.5 hours of multichannel scalp EEG recordings from three patients and compared it to our previously proposed wavelet-based index. In this dataset, the novel combined index detected all epileptic seizures with a false detection rate of 0.52/hr.