Fabrication of suspended silica glass nanofibers from polymeric materials using a scanned electrospinning source Academic Article uri icon

abstract

  • We report on the fabrication of suspended silicon dioxide nanofibers using a scanned electrospinning source and a calcination process. We measured the mechanical oscillations of individual suspended fibers, driven by a piezoelectric actuator. The scanned electrospinning method was utilized to extrude polymeric nanofibers from a blended polymeric solution and deposit oriented nanofibers on patterned surfaces to form suspended structures. The deposited polymeric nanofibers were converted to silicon oxide by calcination without changing their morphologies. By utilizing this technique, a suspended nanofiber with a diameter of 120 nm was fabricated with a resonant frequency of 10.8 MHz and a mechanical quality factor of 1600. Because of the simplicity of the process steps to create organized inorganic nanofibers and the ability to produce suspended structures, this approach opens new opportunities in the study and device use of inorganic nanofibers.

published proceedings

  • NANO LETTERS

altmetric score

  • 3

author list (cited authors)

  • Kameoka, J., Verbridge, S. S., Liu, H. Q., Czaplewski, D. A., & Craighead, H. G.

citation count

  • 76

complete list of authors

  • Kameoka, J||Verbridge, SS||Liu, HQ||Czaplewski, DA||Craighead, HG

publication date

  • January 2004