Biomedical device design discovery team approach to teaching physiology to undergraduate bioengineering students. Academic Article uri icon

abstract

  • Teaching effectiveness is enhanced by generating student enthusiasm, by using active learning techniques, and by convincing students of the value of acquiring knowledge in the area of study. We have employed a technique to teach physiology to bioengineering students that couples students' enthusiasm for their chosen field, bioengineering, with an active learning process in which students are asked to design a biomedical device to enhance, replace, or create a new cellular or organ system function. Each assignment is designed with specific constraints that serve to direct students' attention to specific areas of study and that require students to create original designs. Preventing students from using existing designs spurred student invention and enthusiasm for the projects. Students were divided into groups or "design discovery teams" as might be done in a biomedical device industry setting. Students then researched the physiological issues that would need to be addressed to produce an acceptable design. Groups met with faculty to brainstorm and to obtain approval for their general design concepts before proceeding. Students then presented their designs to the instructors in a structured, written outline form and to the class as a 10-minute oral presentation. Grades were based on the outline, oral presentation, and peer evaluations (group members anonymously rated contributions of other members of their team). We believe that this approach succeeded in generating enthusiasm for learning physiology by allowing the students to think creatively in their chosen field of study and that it has resulted in students developing a more thorough understanding of difficult physiological concepts than would have been achieved with a traditional didactic lecture approach.

author list (cited authors)

  • Cudd, T. A., & Wasser, J. S.

citation count

  • 2

publication date

  • December 1999