The effect of moisture absorption on the physical properties of polyurethane shape memory polymer foams. Academic Article uri icon

abstract

  • The effect of moisture absorption on the glass transition temperature (T(g)) and stress/strain behavior of network polyurethane shape memory polymer (SMP) foams has been investigated. With our ultimate goal of engineering polyurethane SMP foams for use in blood contacting environments, we have investigated the effects of moisture exposure on the physical properties of polyurethane foams. To our best knowledge, this study is the first to investigate the effects of moisture absorption at varying humidity levels (non-immersion and immersion) on the physical properties of polyurethane SMP foams. The SMP foams were exposed to differing humidity levels for varying lengths of time, and they exhibited a maximum water uptake of 8.0% (by mass) after exposure to 100% relative humidity for 96 h. Differential scanning calorimetry results demonstrated that water absorption significantly decreased the T(g) of the foam, with a maximum water uptake shifting the T(g) from 67 C to 5 C. Samples that were immersed in water for 96 h and immediately subjected to tensile testing exhibited 100% increases in failure strains and 500% decreases in failure stresses; however, in all cases of time and humidity exposure, the plasticization effect was reversible upon placing moisture-saturated samples in 40% humidity environments for 24 h.

published proceedings

  • Smart Mater Struct

author list (cited authors)

  • Yu, Y., Hearon, K., Wilson, T. S., & Maitland, D. J.

citation count

  • 54

complete list of authors

  • Yu, Ya-Jen||Hearon, Keith||Wilson, Thomas S||Maitland, Duncan J

publication date

  • August 2011