Potassium currents in auditory hair cells of the frog basilar papilla. Academic Article uri icon


  • The whole-cell patch-clamp technique was used to identify and characterize ionic currents in isolated hair cells of the leopard frog basilar papilla (BP). This end organ is responsible for encoding the upper limits of a frog's spectral sensitivity (1.25-2.0 kHz in the leopard frog). Isolated BP hair cells are the smallest hair cells in the frog auditory system, with spherical cell bodies typically less than 20 microm in diameter and exhibiting whole-cell capacitances of 4-7 pF. Hair cell zero-current resting potentials (Vz) varied around a mean of -65 mV. All hair cells possessed a non-inactivating, voltage-dependent calcium current (I(Ca)) that activates above a threshold of -55 mV. Similarly all hair cells possessed a rapidly activating, outward, calcium-dependent potassium current (I(K)(Ca)). Most hair cells also possessed a slowly activating, outward, voltage-dependent potassium current (I(K)), which is approximately 80% inactive at the hair cell Vz, and a fast-activating, inward-rectifying potassium current (I(K1)) which actively contributes to setting Vz. In a small subset of cells I(K) was replaced by a fast-inactivating, voltage-dependent potassium current (I(A)), which strongly resembled the A-current observed in hair cells of the frog sacculus and amphibian papilla. Most cells have very similar ionic currents, suggesting that the BP consists largely of one homogeneous population of hair cells. The kinetic properties of the ionic currents present (in particular the very slow I(K)) argue against electrical tuning, a specialized spectral filtering mechanism reported in the hair cells of birds, reptiles, and amphibians, as a contributor to frequency selectivity of this organ. Instead BP hair cells reflect a generalized strategy for the encoding of high-frequency auditory information in a primitive, mechanically tuned, terrestrial vertebrate auditory organ.

published proceedings

  • Hear Res

author list (cited authors)

  • Smotherman, M. S., & Narins, P. M.

citation count

  • 15

complete list of authors

  • Smotherman, MS||Narins, PM

publication date

  • January 1999