Computational Study of the Palladium-Catalyzed Carbonylative Synthesis of Aromatic Acid Chlorides: The Synergistic Effect of PtBu3 and CO on Reductive Elimination. Academic Article uri icon

abstract

  • We describe herein computational studies on the unusual ability of Pd(PtBu3 )2 to catalyze formation of highly reactive acid chlorides from aryl halides and carbon monoxide. These show a synergistic role of carbon monoxide in concert with the large cone angle PtBu3 that dramatically lowers the barrier to reductive elimination. The tertiary structure of the phosphine is found to be critical in allowing CO association and the generation of a high energy, four coordinate (CO)(PR3 )Pd(COAr)Cl intermediate. The stability of this complex, and the barrier to elimination, is highly dependent upon phosphine structure, with the tertiary steric bulk of PtBu3 favoring product formation over other ligands. These data suggest that even difficult reductive eliminations can be rapid with CO association and ligand manipulation. This study also represents the first detailed exploration of all the steps involved in palladium-catalyzed carbonylation reactions with simple phosphine ligands, including the key rate-determining steps and palladium(0) catalyst resting state in carbonylations.

published proceedings

  • Chemistry

altmetric score

  • 9.25

author list (cited authors)

  • Quesnel, J. S., Moncho, S., Ylijoki, K., Torres, G. M., Brothers, E. N., Bengali, A. A., & Arndtsen, B. A.

citation count

  • 21

complete list of authors

  • Quesnel, Jeffrey S||Moncho, Salvador||Ylijoki, Kai EO||Torres, Gerardo Martin||Brothers, Edward N||Bengali, Ashfaq A||Arndtsen, Bruce A

publication date

  • October 2016

publisher