Factors affecting air sparging remediation systems using field data and numerical simulations Academic Article uri icon

abstract

  • Field data from five air sparging sites were used to assess the effect of several soil, contaminant, and air sparging system factors on the removal time and associated costs required to reach specified clean-up criteria. Numerical simulations were also performed to better assess the field data and to expand the data sets beyond the five field sites. Ten factors were selected and evaluated individually over a range of values based on information from practitioners and the literature. Trends in removal time and removal cost to reach a specified clean-up criterion were analyzed to ascertain the conditions controlling contaminant removal with variations in each factors' value. A linear sensitivity equation was used to quantify system dynamics controlling the observed contaminant removal trends for each factor. Factors found most critical across all field sites in terms of removal time and/or cost were contaminant type, sparge pulsing schedule, number of wells, maximum biodecay rate, total soil porosity, and aquifer organic carbon content. Factors showing moderate to low effect included the depth of the sparge point below the water table, air injection rate/pressure, horizontal air conductivity, and anisotropy ratio. At each field site, subsurface coverage of sparged air, sparged air residence time, contaminant equilibrium in the system, contaminant phase distribution, oxygen availability to microbes, and contaminant volatility seem to control the system responses and were affected by one or more of the 10 factors evaluated.

author list (cited authors)

  • Benner, M. L., Mohtar, R. H., & Lee, L. S.

citation count

  • 33

publication date

  • December 2002