Design Techniques to Improve Blocker Tolerance of Continuous-Time Delta Sigma ADCs
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2014 IEEE. Design techniques to provide robustness against loop saturation due to blockers in modulators are presented. Loop overload detection and correction are employed to improve the analog-to-digital converters (ADCs) tolerance to strong blockers; a fast overload detector activates the input attenuator, maintaining the ADC in linear operation. To further improve ADCs blocker tolerance, a minimally invasive integrated low-pass filter that reduces the most critical adjacent/alternate channel blockers is implemented. Measurement results show that the proposed ADC implemented in a 90 nm CMOS process achieves 69 dB dynamic range over a 20 MHz bandwidth with a sampling frequency of 500 MHz and 17.1 mW of power consumption. The alternate channel blocker tolerance at the most critical frequency is as high as -5.5 dBFS while the conventional feedforward modulator becomes unstable at -23.5 dBFS of blocker power. The proposed blocker rejection techniques are minimally invasive and take less than 0.3 s to settle after a strong agile blocker appears.