Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae. Academic Article uri icon

abstract

  • The filamentous fungus Neurospora crassa undergoes a well-defined developmental program, conidiation, that culminates in the production of numerous asexual spores, conidia. Several cloned genes, including con-10, are expressed during conidiation but not during mycelial growth. Using a previously described selection strategy, we isolated mutants that express con-10 during mycelial growth. Selection was based on expression of an integrated DNA fragment containing the con-10 promoter-regulatory region followed by the initial segment of the con-10 open reading frame fused in frame with the bacterial hygromycin B phosphotransferase structural gene (con10'-'hph). Resistance to hygromycin results from mutational alterations that allow mycelial expression of the con-10'-'hph gene fusion. A set of drug-resistant mutants were isolated; several of these had abnormal conidiation phenotypes and were trans-acting, i.e., they allowed mycelial expression of the endogenous con-10 gene. Four of these had alterations at a single locus, designated rco-1 (regulation of conidiation). Strains with the rco-1 mutant alleles were aconidial, female sterile, had reduced growth rates, and formed hyphae that coiled in a counterclockwise direction, opposite that of the wild type. The four rco-1 mutants had distinct conidiation morphologies, suggesting that conidiation was blocked at different stages. Wild-type rco-1 was cloned by a novel procedure employing heterokaryon-assisted transformation and ligation-mediated PCR. The predicted RCO1 polypeptide is a homolog of Tup1 of Saccharomyces cerevisiae, a multidomain protein that mediates transcriptional repression of genes concerned with a variety of processes. Like tup1 mutants, null mutants of rco-1 are viable and pleiotropic. A promoter element was identified that could be responsible for RCO1-mediated vegetative repression of con-10 and other conidiation genes.

published proceedings

  • Mol Cell Biol

author list (cited authors)

  • Yamashiro, C. T., Ebbole, D. J., Lee, B. U., Brown, R. E., Bourland, C., Madi, L., & Yanofsky, C.

citation count

  • 74

complete list of authors

  • Yamashiro, CT||Ebbole, DJ||Lee, BU||Brown, RE||Bourland, C||Madi, L||Yanofsky, C

publication date

  • November 1996