Fiber-optic electron-spin-resonance thermometry of single laser-activated neurons.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Optically detected electron spin resonance in fiber-coupled nitrogen-vacancy (NV) centers of diamond is used to demonstrate a fiber-optic quantum thermometry of individual thermogenetically activated neurons. Laser-induced temperature variations read out from single neurons with the NV-diamond fiber sensor are shown to strongly correlate with the fluorescence of calcium-ion sensors, serving as online indicators of the inward Ca2+ current across the cell membrane of neurons expressing transient receptor potential (TRP) cation channels. Local laser heating above the TRP-channel activation threshold is shown to reproducibly evoke robust action potentials, visualized by calcium-ion-sensor-aided fluorescence imaging and detected as prominent characteristic waveforms in the time-resolved response of fluorescence Ca2+ sensors.