In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy. Academic Article uri icon

abstract

  • Development of a phenotyping platform capable of noninvasive biochemical sensing could offer researchers, breeders, and producers a tool for precise response detection. In particular, the ability to measure plant stress in vivo responses is becoming increasingly important. In this work, a Raman spectroscopic technique is developed for high-throughput stress phenotyping of plants. We show the early (within 48 h) in vivo detection of plant stress responses. Coleus (Plectranthus scutellarioides) plants were subjected to four common abiotic stress conditions individually: high soil salinity, drought, chilling exposure, and light saturation. Plants were examined poststress induction in vivo, and changes in the concentration levels of the reactive oxygen-scavenging pigments were observed by Raman microscopic and remote spectroscopic systems. The molecular concentration changes were further validated by commonly accepted chemical extraction (destructive) methods. Raman spectroscopy also allows simultaneous interrogation of various pigments in plants. For example, we found a unique negative correlation in concentration levels of anthocyanins and carotenoids, which clearly indicates that plant stress response is fine-tuned to protect against stress-induced damages. This precision spectroscopic technique holds promise for the future development of high-throughput screening for plant phenotyping and the quantification of biologically or commercially relevant molecules, such as antioxidants and pigments.

published proceedings

  • Proc Natl Acad Sci U S A

altmetric score

  • 1

author list (cited authors)

  • Altangerel, N., Ariunbold, G. O., Gorman, C., Alkahtani, M. H., Borrego, E. J., Bohlmeyer, D., ... Scully, M. O.

citation count

  • 59

complete list of authors

  • Altangerel, Narangerel||Ariunbold, Gombojav O||Gorman, Connor||Alkahtani, Masfer H||Borrego, Eli J||Bohlmeyer, Dwight||Hemmer, Philip||Kolomiets, Michael V||Yuan, Joshua S||Scully, Marlan O

publication date

  • March 2017