Carbapenem-Resistant Bacteria Recovered from Faeces of Dairy Cattle in the High Plains Region of the USA.
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
OBJECTIVE: A study was conducted to recover carbapenem-resistant bacteria from the faeces of dairy cattle and identify the underlying genetic mechanisms associated with reduced phenotypic susceptibility to carbapenems. METHODS: One hundred and fifty-nine faecal samples from dairy cattle were screened for carbapenem-resistant bacteria. Phenotypic screening was conducted on two media containing ertapenem. The isolates from the screening step were characterised via disk diffusion, Modified Hodge, and Carba NP assays. Carbapenem-resistant bacteria and carbapenemase-producing isolates were subjected to Gram staining and biochemical testing to include Gram-negative bacilli. Whole genome sequencing was performed on bacteria that exhibited either a carbapenemase-producing phenotype or were not susceptible to ertapenem and were presumptively Enterobacteriaceae. RESULTS: Of 323 isolates collected from the screening media, 28 were selected for WGS; 21 of which were based on a carbapenemase-producing phenotype and 7 were presumptively Enterobacteriaceae and not susceptible to ertapenem. Based on analysis of WGS data, isolates included: 3 Escherichia coli harbouring blaCMY-2 and truncated ompF genes; 8 Aeromonas harbouring blacphA-like genes; 1 Acinetobacter baumannii harbouring a novel blaOXA gene (blaOXA-497); and 6 Pseudomonas with conserved domains of various carbapenemase-producing genes. CONCLUSIONS: Carbapenem resistant bacteria appear to be rare in cattle. Nonetheless, carbapenem-resistant bacteria were detected across various genera and were found to harbour a variety of mechanisms conferring reduced susceptibility. The development and dissemination of carbapenem-resistant bacteria in livestock would have grave implications for therapeutic treatment options in human medicine; thus, continued monitoring of carbapenem susceptibility among enteric bacteria of livestock is warranted.