An explicit description of the irreducible components of the set of matrix pencils with bounded normal rank
Academic Article

Overview

Research

Identity

Additional Document Info

Other

View All

Overview

abstract

2017 Elsevier Inc. The set of mn singular matrix pencils with normal rank at most r is an algebraic set with r+1 irreducible components. These components are the closure of the orbits (under strict equivalence) of r+1 matrix pencils which are in Kronecker canonical form. In this paper, we provide a new explicit description of each of these irreducible components which is a parametrization of each component. Therefore one can explicitly construct any pencil in each of these components. The new description of each of these irreducible components consists of the sum of r rank-1 matrix pencils, namely, a column polynomial vector of degree at most 1 times a row polynomial vector of degree at most 1, where we impose one of these two vectors to have degree zero. The number of row vectors with zero degree determines each irreducible component.