Jori, Swapnil Shriram (2011-02). Glass as a Building Element - A Sustainable Approach: A Study of an Existing Academic Building. Master's Thesis. Thesis uri icon

abstract

  • In the aspects of global sustainability, buildings are known to be one of the largest energy consumers. Though sustainable building construction through technological advances is helping in achieving environment friendly buildings, a considerable amount of energy is also being consumed by existing buildings. While many factors at all different stages of building life are responsible for this, the building material is one of the most important considerations. Glass being the most sensitive building material can lead to high energy consumption in the building if used in an improper way. This study takes this factor into account, and tries to investigate the potential of energy savings in buildings through the simple and basic considerations in design. An energy analysis model of an existing academic building in College Station, Texas was developed using Design Builder computer simulation software. This model was then analyzed for the total amount of energy consumption in the base case. The existing building model was then modified by replacing the glass used for external fenestrations. Latest building codes and standards for the site location, glass properties, and parametric simulation results were taken into consideration. Again the model was simulated for annual energy consumption and the results are noted. This formed the first option for the retrofitting scenario. A hypothetical redesign scenario was also established in which the revision of building orientation was taken into consideration. The building was re-oriented to suit the weather conditions and recommendations by Advanced Energy Design Guidelines (30 percent energy savings over ASHRAE Standard 90.1-1999). The building was then simulated for annual energy consumption. A comparative analysis was performed between the three cases and the study concluded by showing 23 percent savings in the annual fuel consumption, 23.35 percent reduction in CO2 emission of the building and 25 percent reduction in annual solar heat gain under Modified case 1. Modified case 2, however, did not show any further savings due to the form of the building (almost square). However, modified case 1 settings emitted 31.8 percent more CO2 over the Energy Star office building in Texas. This methodology sets up a set of guidelines which can be followed while investigating a building for minimum annual energy consumption.

publication date

  • February 2011