Development of a Lap Joint Fretting Apparatus Academic Article uri icon

abstract

  • An experimental apparatus designed specifically for fretting experiments on mechanical lap joints is presented. A piezoactuator is used to impose fretting motion, and a tri-axial load cell is used to measure tangential force as well as possible misalignment forces. A laser nanosensor is employed to measure the relative motion between the joint halves. No post-processing and filtering of the data is needed to obtain the fretting response using this apparatus. Instead, raw data obtained from experiments with monolithic and 1-bolt aluminum and steel joints under various loading conditions suggest that noise, misalignment, stiffness and damping associated with the apparatus are minimal, and thus the fretting behavior of the mechanical lap joints is accurately captured. Analyses of typical fretting loops obtained by the proposed apparatus suggest that normal preload and maximum tangential displacement influence the critical joint parameters of stiffness and damping. Aluminum joints show a more compliant behavior with more energy dissipation compared to steel joints. 2011 Society for Experimental Mechanics.

published proceedings

  • EXPERIMENTAL MECHANICS

author list (cited authors)

  • Eriten, M., Polycarpou, A. A., & Bergman, L. A.

citation count

  • 21

complete list of authors

  • Eriten, M||Polycarpou, AA||Bergman, LA

publication date

  • October 2011