Physics-based modeling for fretting behavior of nominally flat rough surfaces Academic Article uri icon

abstract

  • A physics-based modeling approach for fretting behavior of nominally flat rough contact is proposed. This approach employs physics-based models for partial slip of spherical contacts to formulate the contact forces at asperity tips. The individual asperity forces are added by a statistical method to obtain the fretting response of a flat rough contact. This approach suggests the plasticity index as an important parameter for studying the surface roughness effects on fretting. Fretting responses obtained by one of the models favorably compare with experimental results obtained from bolted steel lap joints. Tangential stiffness and energy loss per cycle obtained from the experiments and the model predictions deviate at higher preloads. This discrepancy is due to limitations of the modeling approach in accounting for plastic response to tangential loading. © 2011 Elsevier Ltd. All rights reserved.

author list (cited authors)

  • Eriten, M., Polycarpou, A. A., & Bergman, L. A.

citation count

  • 47

publication date

  • May 2011