Zero dimensional quasi-predictive thermodynamic simulation for establishing initial cylinder conditions for CFD simulation of diesel combustion Conference Paper uri icon


  • Computational fluid dynamics (CFD) is now a ubiquitous computational tool for engine design and diagnosis. It is often necessary to provide well-known initial cycle conditions to commence the CFD computations. Such initial conditions can be provided by experimental data. To create an opportunity to computationally study engine conditions where experimental data are not available, a zero-dimensional quasi-predictive thermodynamic simulation is developed that uses well-established spray model to predict rate of heat release and calculated burned gas composition and temperature to predict nitric oxide (NO) concentration. This simulation could in turn be used in reverse to solve for initial cylinder conditions for a targeted NO concentration. This paper details the thermodynamic simulation for diesel engine operating conditions. The goal is to produce a code that is capable of predicting NO emissions as well as performance characteristics such as mean effective pressure (MEP) and brake specific fuel consumption (BSFC). The simulation uses general conservation of mass and energy approaches to model intake, compression, and exhaust. Rate of heat release prediction is based on an existing spray model to predict how fuel concentrations within the spray jet change with penetration. Rate of heat release provides predicted cylinder pressure, which is then validated against experimental pressure data under known operating conditions. An equilibrium mechanism is used to determine burned gas composition which, along with burned gas temperature, can be used for prediction of NO in the cylinder. NO is predicted using the extended Zeldovich mechanism. This mechanism is highly sensitive to temperature, and it is therefore important to accurately predict cylinder gas temperature to obtain correct NO values. Additionally, MEP and BSFC are determined. The simulation focuses on single fuel injection events, but insights are provided to expand the simulation to model multiple injection events.

name of conference

  • Volume 2: Emissions Control Systems; Instrumentation, Controls, and Hybrids; Numerical Simulation; Engine Design and Mechanical Development

published proceedings


author list (cited authors)

  • Bandura, R. A., & Jacobs, T. J.

citation count

  • 0

complete list of authors

  • Bandura, Ryan A||Jacobs, Timothy J

publication date

  • November 2016