An analysis of cell shape and the neuroepithelial basal lamina during optic vesicle formation in the mouse embryo. Academic Article uri icon

abstract

  • The optic vesicle develops as an evagination of the cephalic neural folds. We have examined the early development of the optic vesicle in Swiss Webster mice using correlated transmission electron microscopy (TEM), scanning electron microscopy (SEM), light microscopic (LM) measurements of cell shape changes, immunohistochemical localization of basal lamina (BL) components (type IV collagen, laminin and heparan sulphate proteoglycan (HSPG)) and ultrastructural analysis of the BL. Like the neuroepithelium in other regions, the low columnar cells of the neural plate in the future optic vesicle region become high columnar, then wedge shaped following constriction of the cell apices to form the C-shaped vesicle. In this region, the cells elongate 2 times their initial height before the neural tube closes, then shorten 20% as the vesicle is completed. Cell apices decrease in width by about one half during vesicle formation. Deposition of BL components was initially even, with type IV collagen and laminin reduced in deposition in regions of outpouching. At later stages the linear, even distribution of all four components was re-established. Ultrastructural analysis confirmed the BL discontinuity and re-establishment and correlated the observed cell shaping alterations with apparent increases in the number of microtubules (during elongation) and microfilaments (during apical constriction). The number of apical intercellular junctions also appeared to increase in number during optic vesicle formation, possibly providing stability and coordination to the evagination process.

author list (cited authors)

  • Svoboda, K. K., & O'Shea, K. S.

citation count

  • 50

publication date

  • June 1987