ECM-stimulated actin bundle formation in embryonic corneal epithelia is tyrosine phosphorylation dependent Academic Article uri icon

abstract

  • Previous studies demonstrated that corneal epithelial cells isolated without basal lamina respond to extracellular matrix (ECM) in an actin dependent manner; the basal cell surface flattens and the actin cortical mat reorganizes. We hypothesize that the actin reorganization is initiated by intracellular signaling mechanisms that includes tyrosine phoshporylation and activation of the Rho, MAP kinase, and PI3 kinase signal transduction pathways. Our goals were to develop a morphological assay to test this hypothesis by answering the following questions: 1) Do the actin bundle formations in the cortical mat have the same configuration in response to different ECM molecules? 2) What is the minimum time ECM molecules need to be in contact with the tissue for the actin to reorganize? 3) Will blocking tyrosine phosphorylation inhibit reorganization of the actin? 4) Are known signal transduction proteins phosphorylated in response to soluble matrix molecules? The actin cortical mat demonstrated distinct bundle configurations in the presence of different ECM molecules. Soluble fibronectin accumulated at the basal cell surfaces 75-fold over 30 min in a clustered pattern. The cells need contact with ECM for a minimum of 10 min to reform the actin bundles at 2 hr. In contrast, two substances that bind to heptahelical receptors to stimulate the Rho pathway, bombesin and lysophosphatidic acid, reorganized the actin bundles in 15-30 min. Focal adhesion kinase, p190 Rho-GAP, tensin, and paxillin were tyrosine phosphorylated in response to soluble fibronectin, type I collagen, or laminin 1. Erk-1, erk-2, and PI3 kinase were activated after 1 hr stimulation by type I collagen. Herbimycin A blocked actin reorganization induced by ECM molecules. In conclusion, we have developed two morphological assays to examine the response of corneal epithelial cells to ECM molecules. In addition, actin bundle reorganization involved tyrosine phosphorylation, MAP kinase, and PI3 kinase activation.

published proceedings

  • ANATOMICAL RECORD

author list (cited authors)

  • Svoboda, K., Orlow, D. L., Chu, C. L., & Reenstra, W. R.

citation count

  • 19

complete list of authors

  • Svoboda, KKH||Orlow, DL||Chu, CL||Reenstra, WR

publication date

  • March 1999

publisher