Parathyroid hormone/parathyroid hormone-related peptide modulates growth of avian sternal cartilage via chondrocytic proliferation.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Parathyroid hormone (PTH; 10(-7) to 10(-15) M) decreased terminal chondrogenesis in the avian sterna. During the first half of an 8-day culture, 100 nM PTH (1-34) significantly increased sternal length and downregulated the deposition of type X collagen and its mRNA expression. However, it remains unclear how PTH increased cartilaginous growth. In this study, we examined growth by both cell proliferation and analysis of cyclin d1 and collagen mRNA. Types II, IX, and X collagens and cyclin d1 mRNA were quantified through real-time RT-PCR, while Ki-67 was used as an immunohistochemical proliferation marker. Extracellular matrix content was measured through mRNA quantification of types II, IX, and X collagen and observing deposition of the same collagens. PTH significantly increased the proliferation marker Ki-67 in the sternal cephalic region. There was less type II and X collagen in PTH-treated sterna with concomitant decreases in mRNA production, suggesting that proliferation was the major contributor to cartilage growth in the presence of PTH/PTH-related peptide receptor activation. In conclusion, these experiments demonstrated that PTH increased cartilage growth by upregulating cell proliferation or other extracellular matrix components.