PTH stimulated growth and decreased Col-X deposition are phosphotidylinositol-3,4,5 triphosphate kinase and mitogen activating protein kinase dependent in avian sterna. Academic Article uri icon

abstract

  • Type X collagen (Col-X) deposition is a marker of terminal differentiation during chondrogenesis, in addition to appositional growth and apoptosis. The parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) receptor, or PPR, is a G-Protein coupled receptor (GPCR), which activates several downstream pathways, moderating chondrocyte differentiation, including suppression of Col-X deposition. An Avian sterna model was used to analyze the PPR GPCR downstream kinase role in growth rate and extracellular matrix (ECM) including Col-II, IX, and X. Phosphatidylinositol kinase (PI3K), mitogen activating protein kinase (MAPK) and protein kinase A (PKA) were inhibited with specific established inhibitors LY294002, PD98059, and H89, respectively to test the hypothesis that they could reverse/inhibit the PTH/PTHrP pathway. Excised E14 chick sterna were PTH treated with or without an inhibitor and compared to controls. Sternal length was measured every 24 hr. Cultured sterna were immuno-stained using specific antibodies for Col-II, IX, or X and examined via confocal microscopy. Increased growth in PTH-treated sterna was MAPK, PI3K, and PKA dose dependent, suggesting growth was regulated through multiple pathways. Col-X deposition was rescued in PTH-treated sterna in the presence of PI3K or MAPK inhibitors, but not with the PKA inhibitor. All three inhibitors moderately disrupted Col-II and Col-IX deposition. These results suggest that PTH can activate multiple pathways during chondrocyte differentiation.

published proceedings

  • Anat Rec (Hoboken)

author list (cited authors)

  • Harrington, E. K., Coon, D. J., Kern, M. F., & Svoboda, K.

citation count

  • 15

complete list of authors

  • Harrington, Erik Kern||Coon, David J||Kern, Matthew F||Svoboda, Kathy KH

publication date

  • February 2010

publisher