In vitro osteogenic/dentinogenic potential of an experimental calcium aluminosilicate cement. Academic Article uri icon


  • INTRODUCTION: Calcium aluminosilicate cements are fast-setting, acid-resistant, bioactive cements that may be used as root-repair materials. This study examined the osteogenic/dentinogenic potential of an experimental calcium aluminosilicate cement (Quick-Set) by using a murine odontoblast-like cell model. METHODS: Quick-Set and white ProRoot MTA (WMTA) were mixed with the proprietary gel or deionized water, allowed to set completely in 100% relative humidity, and aged in complete growth medium for 2 weeks until rendered non-cytotoxic. Similarly aged Teflon disks were used as negative control. The MDPC-23 cell line was used for evaluating changes in mRNA expressions of genes associated with osteogenic/dentinogenic differentiation and mineralization (quantitative reverse transcription polymerase chain reaction), alkaline phosphatase enzyme production, and extracellular matrix mineralization (alizarin red S staining). RESULTS: After MDPC-23 cells were incubated with the materials in osteogenic differentiation medium for 1 week, both cements showed up-regulation in ALP and DSPP expression. Fold increases in these 2 genes were not significantly different between Quick-Set and WMTA. Both cements showed no statistically significant up-regulation/down-regulation in RUNX2, OCN, BSP, and DMP1 gene expression compared with Teflon. Alkaline phosphatase activity of cells cultured on Quick-Set and WMTA were not significantly different at 1 week or 2 weeks but were significantly higher (P < .05) than Teflon in both weeks. Both cements showed significantly higher calcium deposition compared with Teflon after 3 weeks of incubation in mineralizing medium (P < .001). Differences between Quick-Set and WMTA were not statistically significant. CONCLUSIONS: The experimental calcium aluminosilicate cement exhibits similar osteogenic/dentinogenic properties to WMTA and may be a potential substitute for commercially available tricalcium silicate cements.

published proceedings

  • J Endod

author list (cited authors)

  • Eid, A. A., Niu, L., Primus, C. M., Opperman, L. A., Pashley, D. H., Watanabe, I., & Tay, F. R.

citation count

  • 32

complete list of authors

  • Eid, Ashraf A||Niu, Li-na||Primus, Carolyn M||Opperman, Lynne A||Pashley, David H||Watanabe, Ikuya||Tay, Franklin R

publication date

  • January 2013