17-Beta-estradiol regulates expression of genes that function in macrophage activation and cholesterol homeostasis.
Academic Article
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Macrophage activation and cholesterol processing can be affected by changes in estrogen concentrations. However, there is a paucity of information about the genes and mechanisms regulating this estrogen effect. In primary monocyte-derived macrophages we detected transcript and protein for estrogen receptor beta (ERbeta). Determination of genes regulated by estrogen was completed using cDNA arrays and semiquantitative RT-PCR on RNA isolated from macrophages cultured in serum free media containing (5-10) x 10(-9)M 17-beta-estradiol and subsequently deprived of estrogen for a 24h period. The data indicate that the transcript levels of interleukin 1 receptor antagonist (IL-1ra), beta 2-microglobulin, annexin XI and the LXR(alpha) receptor significantly increased and that Ly-GDI transcript levels significantly decreased after estrogen withdrawal; data congruent with estrogen depletion regulating macrophage inflammatory and biochemical processes. Treatment of THP-1 cells with phorbol 12-myristate-13-acetate in the presence or absence of estrogen indicate that differentiation to a macrophage-like cell type was a prerequisite for production of the estrogen response. In addition, experiments using cycloheximide treatment, that blocks nascent protein synthesis, indicated that estrogen withdrawal affected the transcript levels of LXR(alpha) and IL-1ra through dissimilar pathways.