Peptide chemotaxis in E. coli involves the Tap signal transducer and the dipeptide permease. Academic Article uri icon

abstract

  • Bacterial chemotaxis provides a simple model system for the more complex sensory responses of multicellular eukaryotic organisms. In Escherichia coli, methylation and demethylation of four related membrane proteins, the methyl-accepting chemotaxis proteins (or MCPs), is central to chemotactic sensing and signal transduction. Three of these proteins, Tar, Tsr and Trg, have been assigned specific roles in chemotaxis. However, the role of the fourth MCP, Tap, has remained obscure. We demonstrate here that Tap functions as a conventional signal transducer, enabling the cell to respond chemotactically to dipeptides. This provides the first evidence of specific bacterial chemotaxis towards peptides. Peptide taxis requires the function of a periplasmic component of the dipeptide permease. This protein represents the first example of a periplasmic chemoreceptor that does not have a sugar substrate.

published proceedings

  • Nature

altmetric score

  • 3

author list (cited authors)

  • Manson, M. D., Blank, V., Brade, G., & Higgins, C. F.

citation count

  • 149

complete list of authors

  • Manson, MD||Blank, V||Brade, G||Higgins, CF

publication date

  • January 1986

published in