Isomorphic coalescence of aster cores formed in vitro from microtubules and kinesin motors. Academic Article uri icon

abstract

  • We report fluorescence microscopy studies of the formation of aster-like structures emerging from a cellular element-based active system and a novel analysis of the aster condensation. The system consists of rhodamine labeled microtubules which are dynamically coupled by functionalized kinesin motor proteins cross-linked via streptavidin-coated quantum dots (QDs). The aster-shaped objects contain core structures. The cores are aggregates of the QD-motor protein complexes, and result from the dynamic condensation of sub-clusters that are connected to each other randomly. The structural specificity of the aster core reflects a configuration of the initial connectivity between sub-clusters. Detailed image analysis allows us to extract a novel correlation between the condensation speed and the sub-cluster separation. The size of the core is scaled down during the condensation process, following a power law dependence on the distance between sub-clusters. The exponent of the power law is close to two, as expected from a geometric model. This single exponent common to all the contractile lines implies that there exists a time regime during which an isomorphic contraction of the aster core continues during the condensation process. We analyze the observed contraction by using a model system with potential applicability in a wide range of emergent phenomena in randomly coupled active networks, which are prevalent in the cellular environment.

published proceedings

  • Phys Biol

altmetric score

  • 1.5

author list (cited authors)

  • Kim, K., Sikora, A., Nakazawa, H., Umetsu, M., Hwang, W., & Teizer, W.

citation count

  • 2

complete list of authors

  • Kim, K||Sikora, A||Nakazawa, H||Umetsu, M||Hwang, W||Teizer, W

publication date

  • September 2016