Acid Diversion by Use of Viscoelastic Surfactants: The Effects of Flow Rate and Initial Permeability Contrast Academic Article uri icon

abstract

  • Summary The purpose of matrix stimulation in carbonate reservoirs is to bypass damaged areas and increase the effective wellbore area. This can be achieved by creating highly conductive flow channels known as wormholes. A further injection of the acid will follow a wormhole path where the permeability has increased significantly, leaving substantial intervals untreated. This problem can be more significant as the contrast in permeability increases within the target zones. Diverting materials, such as viscoelastic-surfactant (VES) -based acids, play an important role in mitigating this problem. The acid-injection rate was found to be a critical parameter to maximize the efficiency of the use of VES-based acids as a diverting chemical in addition to creating wormholes. It was found that the maximum apparent viscosity, which developed during VES-based-acids injection, occurred over a narrow window of acid-injection rates. Higher injection rates were not effective in enhancing the acidizing process, and the use of diverting material became similar in effect to that of regular acids. The use of VES-based acid was also found to be constrained by the scale of the initial permeability ratio. For initial permeability ratios greater than approximately 10, the diversion was insufficient. The results were obtained by conducting a large set of acidizing experiments by use of 20-in.-long cores. Both single- and parallel-coreflood experiments were performed in this study. Carbonate cores were used with initial permeabilities of 4150 md, and the flow rate was varied from 1.5 to 50 cm3/min. The initial ratio of permeability between the two cores ranged from 2 to 15. To characterize the wormholes, computerized tomography (CT) was used to generate a 3D view of the wormholes in each core. By use of the results obtained from single cores, the acid-injection rate was found to be a critical parameter in maximizing the efficiency of the use of VES as a diverting agent during matrix-acidizing treatments. Higher injection rates were not effective in enhancing the acidizing process, and the use of diverting material produced results similar to those of regular hydrochloric acid (HCl). Parallel-coreflood experiments indicated that the use was found to be constrained by the scale of the initial permeability ratio. For initial permeability ratios greater than approximately 10, diversion was insufficient in 20-in. coreflood tests. For permeability ratios greater than 10, the acid-placement treatment needs to be designed more carefully.

published proceedings

  • SPE JOURNAL

altmetric score

  • 3

author list (cited authors)

  • Al-Ghamdi, A. H., Mahmoud, M. A., Wang, G., Hill, A. D., & Nasr-El-Din, H. A.

citation count

  • 34

complete list of authors

  • Al-Ghamdi, AH||Mahmoud, MA||Wang, G||Hill, AD||Nasr-El-Din, HA

publication date

  • December 2014