Chromosomal synapsis and the meiotic process in male mesquite lizards, Sceloporus grammicus complex.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Meiosis in males of the F5 cytotype of Sceloporus grammicus was examined through the analysis of synaptonemal complexes (SCs), diakinetic (metaphase I) nuclei, and secondary spermatocytes (metaphase II configurations). These data allowed the establishment of criteria for substaging of zygonema and pachynema, morphological characterization of the SC complement, and comparison of the orientation and segregation of the autosomes and sex chromosomes. The analysis of nuclei from all stages of meiotic prophase I (leptonema through diakinesis) provided a useful means of partitioning the temporal sequence of early meiotic events. Three substages of zygonema (Z1-Z3) were established, based on the extent of synapsis of the microchromosomal and macrochromosomal elements. Synaptic initiation of the autosomes and sex chromosomes was synchronous. Two patterns of macrochromosomal synapsis were observed. Whereas synapsis of the biarmed elements was biterminal (i.e., progressing from both ends of the homologs), synapsis of the acrocentric elements was uniterminal involving only the distal (noncentromeric) ends of the homologs. Unique sex-chromosomal characteristics were not observed in S. grammicus and, therefore, the substaging of pachynema was based on subjective criteria. Examination of diakinesis--metaphase I and metaphase II configurations indicated low levels of diakinetic irregularities with balanced segregation of the autosomal bivalents and the sex-chromosomal trivalent.