Bioactive mono-dispersed nanospheres with long-term antibacterial effects for endodontic sealing.
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
Endodontic sealers with antibacterial capability play an important role in preventing reinfection of an endodontically treated root canal and improving the long-term success of root canal treatment. However, current endodontic sealers rapidly lose their antibacterial properties after fixation. In this work, we designed and synthesized quaternized mono-dispersed bioactive nanospheres as a potential substrate for the development of a long-term antibacterial endodontic sealer with excellent cytocompatibility and biocompatibility. First, mono-dispersed silica-based bioactive glass nanospheres (SBG-NS) were prepared via a modified sol-gel process. Next, a series of quaternary ammonium methacrylate salts (QAMs) with broad antibacterial spectra were synthesized and grafted onto the surfaces of the SBG-NS via a two-step coupling approach. The antibacterial effect of the quaternary ammonium polymethacrylate (QAPM)-containing SBG-NS (SBG-QAPM) against persistent microorganisms associated with infected root canals was evaluated using a direct contact test. Evaluations of the SBG-QAPM cytocompatibility and biocompatibility were performed using LIVE/DEAD staining, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2, 5-tetrazoliumbromide (MTT) assay, and a calvarial implantation model. The results showed that the SBG-QAPMs had the strongest long-term antibacterial effect against the Enterococcus faecalis, Streptococcus mutans, and Streptococcus sanguis during the study period, the best cytocompatibility, and the lowest systemic inflammation compared to three commercial products: ProRoot MTA, Endomethasone C, and AH Plus. In addition, the SBG-QAPMs showed excellent stability in aqueous solution. This work indicates that the SBG-QAPMs are promising substrates for the development of long-term antibacterial endodontic sealers.