Testing Mendelian inheritance from field-collected parasites: Revealing duplicated loci enables correct inference of reproductive mode and mating system Academic Article uri icon

abstract

  • Cryptic aspects of parasite population biology, e.g., mating systems, are increasingly being inferred from polymorphic and co-dominant genetic markers such as microsatellite loci. Underlying the use of such co-dominant markers is the assumption of Mendelian inheritance. The failure to meet this assumption can lead to artifactual statistics and erroneous population inferences. Here, we illustrate the importance of testing the Mendelian segregation and assortment of genetic markers and demonstrate how field-collected samples can be utilised for this purpose. To examine the reproductive mode and mating system of hermaphroditic parasites, we developed microsatellites for the cestode, Oochoristica javaensis. Among loci, we found a bimodal distribution of F(IS) (a fixation index that quantifies the deviation from Hardy-Weinberg equilibrium within subpopulations) values where loci were either highly negative (close to -1) or highly positive (∼0.8). By conducting tests of Mendelian segregation from natural crosses, we determined that loci with negative F(IS) values were in fact duplicated loci that were amplified by a single primer pair. Genetic crosses also provided linkage data and indicated that the duplicated loci most likely arose via tandem duplications rather than whole genome/chromosome duplications. By correcting for the duplicated loci, we were able to correctly infer that O. javaensis has sexual reproduction, but the mating system is highly inbred. To assist others in testing Mendelian segregation and independent assortment from natural samples, we discuss the benefits and limitations, and provide guidelines for particular parasite systems amenable to the methods employed here.

author list (cited authors)

  • Detwiler, J. T., & Criscione, C. D.

citation count

  • 21

publication date

  • August 2011