Influence of Applied Voltages on Mechanical Properties and In-Vitro Performances of Electroplated Hydroxyapatite Coatings on Pure Titanium
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
The Author(s) 2016. Titanium and its alloys have been extensively used in biomaterials due to their bone-compatible modulus, superior bio-compatibility and enhanced corrosion resistance. But the metal implants that contact the body will release ions and scraps. In this study, Hydroxyapatite (HA, Ca10(PO4)6(OH)2) was coated on a pure Ti substrate by electrochemical deposition process, which can provide a well-controlled process and product. Across various applied voltages, the electroplated HA/Ti composites were evaluated on their chemical and mechanical performances and the behaviors of in-vitro simulating tests. Highly pure HA coatings were obtained with additional voltages from 16 V to 19 V. In addition, their mechanical properties were significantly enhanced with increasing voltages. With the results of in-vitro evaluations, the electroplated HA/Ti composites is capable of serving as a biomaterial for bone substitution or implantation.