Chiral vortical and magnetic effects in the anomalous transport model Academic Article uri icon

abstract

  • 2017 American Physical Society. We extend our recent study of chiral magnetic effect in relativistic heavy ion collisions based on an anomalous transport model by including also the chiral vortical effect. We find that although vorticities in the chirally restored quark matter, which result from the large angular momentum in noncentral collisions, can generate an axial charge dipole moment in the transverse plane of a heavy ion collision, it does not produce a difference in the eccentricities of negatively and positively charged particles. As a result, including the chiral vortical effect alone cannot lead to a splitting between the elliptic flows of negatively and positively charged particles. On the other hand, negatively and positively charged particles do develop a splitting in their elliptic flows if the effect due to a strong and long-lived magnetic field is also included. However, to have a positive slope in the dependence of the elliptic flow splitting on the charge asymmetry of the quark matter, as seen in experiments, requires the neglect of the effect of the Lorentz force. In this case, an elliptic flow splitting appears even at vanishing charge asymmetry.

published proceedings

  • Physical Review C

author list (cited authors)

  • Sun, Y., & Ko, C. M.

citation count

  • 26

complete list of authors

  • Sun, Yifeng||Ko, Che Ming

publication date

  • March 2017