Superfluorescence from dense electron-hole plasmas in high magnetic fields
Conference Paper
Overview
Identity
Additional Document Info
Other
View All
Overview
abstract
Cooperative spontaneous recombination (superfluorescence) of electron-hole plasmas in semiconductors has been a challenge to observe due to ultrafast decoherence. We argue that superfluorescence can be achieved in quantum-confined semiconductor systems and present experimental evidence for superfluorescence from high-density photoexcited electronhole plasmas in magnetized quantum wells. At a critical magnetic field strength and excitation fluence, we observe a clear transition in the band-edge photoluminescence from omnidirectional output to a randomly directed but highly collimated beam. Changes in the linewidth, carrier density, and magnetic field scaling of the emission spectra correlate precisely with the onset of random directionality and are consistent with cooperative recombination. 2006 IOP Publishing Ltd.