Nonparametric estimation of large covariance matrices of longitudinal data Academic Article uri icon


  • Estimation of an unstructured covariance matrix is difficult because of its positive-definiteness constraint. This obstacle is removed by regressing each variable on its predecessors, so that estimation of a covariance matrix is shown to be equivalent to that of estimating a sequence of varying-coefficient and varying-order regression models. Our framework is similar to the use of increasing-order autoregressive models in approximating the covariance matrix or the spectrum of a stationary time series. As an illustration, we adopt Fan & Zhang's (2000) two-step estimation of functional linear models and propose nonparametric estimators of covariance matrices which are guaranteed to be positive definite. For parsimony a suitable order for the sequence of (auto) regression models is found using penalised likelihood criteria like AIC and BIC. Some asymptotic results for the local polynomial estimators of components of a covariance matrix are established. Two longitudinal datasets are analysed to illustrate the methodology. A simulation study reveals the advantage of the nonparametric covariance estimator over the sample covariance matrix for large covariance matrices.

published proceedings

  • Biometrika

author list (cited authors)

  • Wu, W. B.

citation count

  • 155

complete list of authors

  • Wu, WB

publication date

  • December 2003