Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Accurate knowledge of freshwater availability is indispensable for water resources management at regional or national level. This information, however, has historically been very difficult to obtain because of lack of data, difficulties in the aggregation of spatial information, and problems in the quantification of distributed hydrological processes. The currently available estimates of freshwater availability by a few large international organizations such as FAO and UNESCO are often not sufficient as they only provide aggregated rough quantities of river discharge and groundwater recharge (blue water) at a national level and on a yearly basis. This paper aims to provide a procedure to improve the estimations of freshwater availability at subbasin level and monthly intervals. Applying the distributed hydrological model "Soil and Water Assessment Tool" (SWAT), the freshwater availability is quantified for a 4-million km2 area covering some 18 countries in West Africa. The procedure includes model calibration and validation based on measured river discharges, and quantification of the uncertainty in model outputs using "Sequential Uncertainty Fitting Algorithm" (SUFI-2) The aggregated results for 11 countries are compared with two other studies. It was seen that for most countries, the estimates from the other two studies fall within our calculated prediction uncertainty ranges. The uncertainties are, in general, within reasonable ranges but larger in subbasins containing features such as dams and wetlands, or subbasins with inadequate climate or landuse information. As the modelling procedure in this study proved quite successful, its application for quantification of freshwater availability at a global scale is already underway. There are, however, two limitations in the West African model: (1) not all the components of the water balance model such as soil moisture or deep aquifer recharge could be directly calibrated because of lack of data and (2) the full capabilities of the SWAT model could not be realized because of the lack of local water and agricultural management information. 2007 Elsevier B.V. All rights reserved.