Filtering remotely sensed chlorophyll concentrations in the Red Sea using a spacetime covariance model and a Kalman filter Academic Article uri icon

abstract

  • 2015 Elsevier Ltd. A statistical model is proposed to filter satellite-derived chlorophyll concentration from the Red Sea, and to predict future chlorophyll concentrations. The seasonal trend is first estimated after filling missing chlorophyll data using an Empirical Orthogonal Function (EOF)-based algorithm (Data Interpolation EOF). The anomalies are then modeled as a stationary Gaussian process. A method proposed by Gneiting (2002) is used to construct positive-definite space-time covariance models for this process. After choosing an appropriate statistical model and identifying its parameters, Kriging is applied in the space-time domain to make a one step ahead prediction of the anomalies. The latter serves as the prediction model of a reduced-order Kalman filter, which is applied to assimilate and predict future chlorophyll concentrations. The proposed method decreases the root mean square (RMS) prediction error by about 11% compared with the seasonal average.

published proceedings

  • Spatial Statistics

author list (cited authors)

  • Dreano, D., Mallick, B., & Hoteit, I.

citation count

  • 4

complete list of authors

  • Dreano, Denis||Mallick, Bani||Hoteit, Ibrahim

publication date

  • January 2015