A variational Bayesian approach for inverse problems with skew-t error distributions
Overview
Research
Identity
Additional Document Info
Other
View All
Overview
abstract
2015 Elsevier Inc. In this work, we develop a novel robust Bayesian approach to inverse problems with data errors following a skew-t distribution. A hierarchical Bayesian model is developed in the inverse problem setup. The Bayesian approach contains a natural mechanism for regularization in the form of a prior distribution, and a LASSO type prior distribution is used to strongly induce sparseness. We propose a variational type algorithm by minimizing the Kullback-Leibler divergence between the true posterior distribution and a separable approximation. The proposed method is illustrated on several two-dimensional linear and nonlinear inverse problems, e.g. Cauchy problem and permeability estimation problem.