Space-time diversity versus feedback-based channel adaptation in cross-layer design of wireless networks
Conference Paper
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
In order to support the Quality of Service (QoS) for data applications in wideband CDMA (W-CDMA) networks, Space-Time (ST) techniques are developed at the physical layer. The employment of such techniques also plays an important role in cross-layer design for wireless networks. In this paper, we investigate three different channel-feedback adaptation-based space-time systems, including non-adaptive, fast-adaptive, and slow-adaptive schemes. Our analysis reveals the tradeoff between the space-time diversity and channel-feedback adaptation. The improvement of QoS for data transmission can be achieved either by enhancing the space-time diversity or by increasing the channel-feedback. However, the space-time diversity impacts the system throughput more significantly than the channel-feedback adaptation. We also obtain a set of optimal system parameters to achieve the maximum throughput. Both numerical and simulation results show that the enhancement of space-time diversity can increase the system throughput and simplify the higher-layer protocol design using channel-feedback. Also compared are the throughput improvements as taking the feedback cost into account.