Statistical QoS provisionings for wireless unicast/multicast of multi-layer video streams Academic Article uri icon

abstract

  • Due to the time-varying wireless channels, deterministic quality of service (QoS) is usually difficult to guarantee for real-time multi-layer video transmissions in wireless networks. Consequently, statistical QoS guarantees have become an important alternative in supporting real-time video transmissions. In this paper, we propose an efficient framework to model the statistical delay QoS guarantees, in terms of QoS exponent, effective bandwidth/capacity, and delay-bound violation probability, for multi-layer video transmissions over wireless fading channels. In particular, a separate queue is maintained for each video layer, and the same delay bound and corresponding violation probability threshold are set up for all layers. Applying the effective bandwidth/capacity analyses on the incoming video stream, we obtain a set of QoS exponents for all video layers to effectively characterize this delay QoS requirement.We then develop a set of optimal adaptive transmission schemes to minimize the resource consumption while satisfying the diverse QoS requirements under various scenarios, including video unicast/multicast with and/or without loss tolerance. Simulation results are also presented to demonstrate the impact of statistical QoS provisioning on resource allocations of our proposed adaptive transmission schemes. © 2010 IEEE.

author list (cited authors)

  • Du, Q., & Zhang, X. i.

citation count

  • 71

publication date

  • April 2010