Cross-layer-model based adaptive resource allocation for statistical QoS guarantees in mobile wireless networks Academic Article uri icon

abstract

  • We propose a cross-layer-model based adaptive resource-allocation scheme for the diverse quality-of-service (QoS) guarantees over downlink mobile wireless networks. Our proposed scheme dynamically assigns power-levels and time-slots for heterogeneous real-time mobile users to satisfy the variation of statistical delay-bound QoS requirements. To achieve this goal, we apply Wu and Negi's effective capacity approach to derive the admission-control and power/time-slot allocation algorithms, guaranteeing the statistical delay-bound for heterogeneous mobile users. When designing such an algorithm, we study the impact of physical-layer issues such as adaptive power-control and channel-state information (CSI) feedback delay on the QoS provisioning performance. Through numerical and simulation results, we observe that the adaptive power adaptation has a significant impact on statistical QoS-guarantees. In addition, the analyses indicate that our proposed resource-allocation algorithms are shown to be able to efficiently support the diverse QoS requirements for various real-time mobile users over different wireless channels. Also, in an in-door mobile environment, e.g., the widely used wireless local-area networks (WLAN), our proposed algorithm is shown to be robust to the CSI feedback delay. 2008 IEEE.

published proceedings

  • IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS

author list (cited authors)

  • Tang, J., & Zhang, X. i.

citation count

  • 132

complete list of authors

  • Tang, Jia||Zhang, Xi

publication date

  • June 2008