Spatially Adaptive Bayesian Penalized Splines With Heteroscedastic Errors Academic Article uri icon

abstract

  • Penalized splines have become an increasingly popular tool for nonparametric smoothing because of their use of low-rank spline bases, which makes computations tractable while maintaining accuracy as good as smoothing splines. This article extends penalized spline methodology by both modeling the variance function nonparametrically and using a spatially adaptive smoothing parameter. This combination is needed for satisfactory inference and can be implemented effectively by Bayesian MCMC. The variance process controlling the spatially adaptive shrinkage of the mean and the variance of the heteroscedastic error process are modeled as log-penalized splines. We discuss the choice of priors and extensions of the methodology, in particular, to multi-variate smoothing. A fully Bayesian approach provides the joint posterior distribution of all parameters, in particular, of the error standard deviation and penalty functions. MATLAB, C, and FORTRAN programs implementing our methodology are publicly available. 2007 American Statistical Association.

published proceedings

  • Journal of Computational and Graphical Statistics

author list (cited authors)

  • Crainiceanu, C. M., Ruppert, D., Carroll, R. J., Joshi, A., & Goodner, B.

citation count

  • 60

complete list of authors

  • Crainiceanu, Ciprian M||Ruppert, David||Carroll, Raymond J||Joshi, Adarsh||Goodner, Billy

publication date

  • June 2007