Bayesian Modeling of MPSS Data: Gene Expression Analysis of Bovine Salmonella Infection. Academic Article uri icon

abstract

  • Massively Parallel Signature Sequencing (MPSS) is a high-throughput counting-based technology available for gene expression profiling. It produces output that is similar to Serial Analysis of Gene Expression (SAGE) and is ideal for building complex relational databases for gene expression. Our goal is to compare the in vivo global gene expression profiles of tissues infected with different strains of Salmonella obtained using the MPSS technology. In this article, we develop an exact ANOVA type model for this count data using a zero-inflated Poisson (ZIP) distribution, different from existing methods that assume continuous densities. We adopt two Bayesian hierarchical models-one parametric and the other semiparametric with a Dirichlet process prior that has the ability to "borrow strength" across related signatures, where a signature is a specific arrangement of the nucleotides, usually 16-21 base-pairs long. We utilize the discreteness of Dirichlet process prior to cluster signatures that exhibit similar differential expression profiles. Tests for differential expression are carried out using non-parametric approaches, while controlling the false discovery rate. We identify several differentially expressed genes that have important biological significance and conclude with a summary of the biological discoveries.

published proceedings

  • J Am Stat Assoc

author list (cited authors)

  • Dhavala, S. S., Datta, S., Mallick, B. K., Carroll, R. J., Khare, S., Lawhon, S. D., & Adams, L. G.

citation count

  • 13

complete list of authors

  • Dhavala, Soma S||Datta, Sujay||Mallick, Bani K||Carroll, Raymond J||Khare, Sangeeta||Lawhon, Sara D||Adams, L Garry

publication date

  • September 2010