Nuclear pairing from microscopic forces: Singlet channels and higher-partial waves Academic Article uri icon

abstract

  • © 2014 American Physical Society. Background: An accurate description of nuclear pairing gaps is extremely important for understanding static and dynamic properties of the inner crusts of neutron stars and to explain their cooling process.Purpose: We plan to study the behavior of the pairing gaps ΔF as a function of the Fermi momentum kF for neutron and nuclear matter in all relevant angular momentum channels where superfluidity is believed to naturally emerge. The calculations will employ realistic chiral nucleon-nucleon potentials with the inclusion of three-body forces and self-energy effects.Methods: The superfluid states of neutron and nuclear matter are studied by solving the BCS gap equation for chiral nuclear potentials using the method suggested by Khodel et al., where the original gap equation is replaced by a coupled set of equations for the dimensionless gap function χ(k) defined by Δ(k)=ΔFχ(k) and a nonlinear algebraic equation for the gap magnitude ΔF=Δ(kF) at the Fermi surface. This method is numerically stable even for small pairing gaps, such as that encountered in the coupled 3PF2 partial wave.Results: We have successfully applied Khodel's method to singlet (S) and coupled channel (SD and PF) cases in neutron and nuclear matter. Our calculations agree with other ab initio approaches, where available, and provide crucial inputs for future applications in superfluid systems.

altmetric score

  • 0.25

author list (cited authors)

  • Maurizio, S., Holt, J. W., & Finelli, P.

citation count

  • 30

publication date

  • October 2014