Electronic transitions in [Re6S8X6](4-) (X = Cl, Br, I): results from time-dependent density functional theory and solid-state calculations. Academic Article uri icon

abstract

  • Relativistic time-dependent density functional theory (TDDFT) calculations were performed on the excited states of the [Re6S8X6](4-) (X = Cl, Br, I) series. For all members of the series, the lowest excited states in the spectra do not correspond to a ligand-to-metal (or ligand-to-cluster) excitation but rather a cluster-cluster transition from the HOMO e(g) to antibonding t(1u) orbitals with only a modest admixture of Re-X sigma* character. These results lead to a re-evaluation of the role of the axial ligand in these compounds. The calculated excitation energies reproduce the experimental absorption and emission spectra. This work also confirms previous TDDFT calculations on the emission energies. Results for discrete cluster ions are compared with those obtained from calculations in the solid state in Cs4[Re6S8X6].CsX (X = Cl, Br) and Cs4[Re6S8I6].2CsI. Significant differences are seen in the relatively higher energies of the antibonding t(1u) orbital in the solid-state case, and an inversion in the orbital character of the two allowed absorptions is calculated. The e(g) (HOMO)-to-a(2g) (LUMO) orbital energy differences corresponding to the emission transition are quite comparable for the solid state and discrete cluster calculations, and both overestimate the observed emission energy by the same margin.

author list (cited authors)

  • Roy, L. E., & Hughbanks, T

citation count

  • 15

complete list of authors

  • Roy, Lindsay E||Hughbanks, Timothy

publication date

  • January 2006