Symmetry energy in the equation of state of asymmetric nuclear matter Academic Article uri icon

abstract

  • The symmetry energy is an important quantity in the equation of state of isospin asymmetric nuclear matter. This currently unknown quantity is key to understanding the structure of systems as diverse as the neutron-rich nuclei and neutron stars. At TAMU, we have carried out studies, aimed at understanding the symmetry energy, in a variety of reactions such as, the multifragmentation of 40Ar, 40Ca + 58Fe, 58Ni and 58Ni, 58Fe + 58Ni, 58Fe reactions at 25 - 53 AMeV, and deep-inelastic reactions of 86Kr + 124,112Sn, 64,58Ni (25 AMeV), 64Ni + 64,58Ni, 112,124Sn, 232Th, 208Pb (25 AMeV) and 136Xe + 64,58Ni, 112,124Sn, 232Th, 197Au (20 AMeV). Here we present an overview of some of the results obtained from these studies. The results are analyzed within the framework of statistical and dynamical models, and have important implications for future experiments using beams of neutron-rich nuclei. 2007 American Institute of Physics.

published proceedings

  • VI LATIN AMERICAN SYMPOSIUM ON NUCLEAR PHYSICS AND APPLICATIONS

author list (cited authors)

  • Yennello, S. J., Shetty, D. V., & Souliotis, G. A.

citation count

  • 0

complete list of authors

  • Yennello, SJ||Shetty, DV||Souliotis, GA

publication date

  • February 2007

publisher

  • AIP  Publisher