Construction of a Reactive Diblock Copolymer, Polyphosphoester-block-Poly(L-lactide), as a Versatile Framework for Functional Materials that are Capable of Full Degradation and Nanoscopic Assembly Formation. Academic Article uri icon

abstract

  • The development of a diblock copolymer, polyphosphoester-block-poly(L-lactide), which has potential for being fully-degradable and biocompatible, was achieved by one-pot sequential ring-opening polymerizations (ROPs) of two cyclic monomers: alkyne-functionalized phospholane and L-lactide (LLA). A kinetic study of the polymerization in each step was investigated in a detailed manner by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC), revealing living/controlled characteristics with narrow molecular weight distributions and a linear increase of molecular weights vs. monomer conversion and time. Subsequently, photo-induced thiol-yne "click" reactions with small molecule thiols bearing either carboxylic acid or amino groups afforded amphiphilic diblock copolymers with carboxylate or amino side-chain functionalities along the polyphosphoester segment of the diblock copolymer backbone. Finally, direct dissolution of the two different types of amphiphilic diblock copolymers in aqueous solutions yielded well-defined spherical micelles with corresponding negative or positive surface charges, respectively, as confirmed by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential analyses.

published proceedings

  • ACS Macro Lett

author list (cited authors)

  • Lim, Y. H., Heo, G. S., Cho, S., & Wooley, K. L.

citation count

  • 34

complete list of authors

  • Lim, Young H||Heo, Gyu Seong||Cho, Sangho||Wooley, Karen L

publication date

  • September 2013