Antigen-decorated shell cross-linked knedel-like nanoparticles (SCKs) were synthesized and studied as multivalent nanoscale surfaces from which antibody-binding units were presented in a manner that was designed to approach virus particle surfaces. The SCK nanostructures were fabricated with control over the number of antigenic groups, from mixed micellization of amphiphilic diblock copolymer building blocks that contained either an antigen (2,4-dinitrophenyl) or an ethylpropionate group at the hydrophilic alpha-chain terminus. Amphiphilic diblock copolymers were synthesized by atom transfer radical polymerization of tert-butyl acrylate and methyl acrylate sequentially from either a 2,4-dinitrophenyl-functionalized initiator or ethyl 2-bromopropionate, followed by selective removal of the tert-butyl groups to afford 2,4-dinitrophenyl-poly(acrylic acid)60-b-poly(methyl acrylate)60 (DNP-PAA(60)-b-PMA60) and poly(acrylic acid)70-b-poly(methyl acrylate) (PAA70-b-PMA70). Micelles were assembled via addition of water to THF solutions of the polymers in 0:1, 1:1, and 1:0 molar ratios of DNP-PAA60-b-PMA60 to PAA70-b-PMA70, followed by dialysis against water. The acrylic acid groups of the micelle coronas were partially cross-linked (nominally 50%) with 2,2'-(ethylenedioxy)bis(ethylamine), in the presence of 1-(3'-dimethylaminopropyl)-3-ethylcarbodiimide methiodide. Following extensive dialysis against water, the 0%, 50%, and 100% dinitrophenylated shell cross-linked nanoparticles (DNP-SCKs) were characterized with dynamic light scattering (DLS), transmission electron microscopy (TEM), atomic force microscopy (AFM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), infrared and UV-vis spectroscopies, and analytical ultracentrifugation (AU). The surface accessibility and bioavailability of the DNP units upon the DNP-SCKs were investigated by performing quenching titrations of fluorescein-labeled IgE antibody in solution and degranulation of IgE sensitized RBL-2H3 cells. The DNP antigens proved to be surface-available and able to form multivalent bonds with IgE antibodies, causing degranulation.