13C and (2)H kinetic isotope effects and the mechanism of Lewis acid-catalyzed ene reactions of formaldehyde.
Academic Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
13C and (2)H kinetic isotope effects were determined for the ene reaction of formaldehyde with 2-methyl-2-butene at natural abundance catalyzed by diethylaluminum chloride. The reactive methyl group exhibits a k(12)(C)/k(13)(C) of 1.006-1.009 and a k(H)/k(D) of approximately 1.22-1.23. The latter represents a combination of primary and secondary effects and is consistent with a significant primary deuterium isotope effect. A very close correspondence of the other isotope effects with the equilibrium isotope effects predicted for formation of a model intermediate cation is observed. An intermolecular deuterium isotope effect of 2.0-2.5 was observed under several reaction conditions in the Lewis acid-catalyzed reaction of formaldehyde with d(0)/d(12)-tetramethylethylene. The results are interpreted as supporting the reversible formation of an essentially classical open cation followed by rate-limiting proton transfer.