Thermal reactions of 7-d- and 8-d-bicyclo[4.2.0]oct-2-enes. Academic Article uri icon


  • The gas phase thermal reactions exhibited by bicyclo[4.2.0]oct-2-ene and 7-d and 8-d analogues at 300 degrees C have been followed kinetically through GC and 2H NMR spectroscopic analyses. In contrast to the pattern of transformations exhibited by bicyclo[3.2.0]hept-2-ene and deuterium-labeled analogues, no reactions initiated by C1-C6 bond cleavage are seen, epimerization at C8 is much faster than [1,3] shifts leading to bicyclo[2.2.2]oct-2-ene, and the ratio of rate constants for [1,3] carbon migration with inversion versus migration with retention is approximately 1.4. Homolysis of C1-C8 to give a conformationally flexible diradical intermediate having a relatively long lifetime and multiple options for further reaction (re-formation of C1-C8 with or without net epimerization, fragmentation to 1,3-cyclohexadiene and ethylene, migration to the original C3 with inversion or retention) accords well with the observations. Clearly, orbital symmetry control does not govern stereochemistry for the [1,3] sigmatropic carbon shifts.

published proceedings

  • J Am Chem Soc

altmetric score

  • 3

author list (cited authors)

  • Baldwin, J. E., Leber, P. A., & Powers, D. C.

citation count

  • 10

complete list of authors

  • Baldwin, John E||Leber, Phyllis A||Powers, David C

publication date

  • August 2006