Ligand survey results in identification of PNP pincer complexes of iridium as long-lived and chemoselective catalysts for dehydrogenative borylation of terminal alkynes. Academic Article uri icon


  • Following the report on the successful use of SiNN pincer complexes of iridium as catalysts for dehydrogenative borylation of terminal alkynes (DHBTA) to alkynylboronates, this work examined a wide variety of related pincer ligands in the supporting role in DHBTA. The ligand selection included both new and previously reported ligands and was developed to explore systematic changes to the SiNN framework (the 8-(2-diisopropylsilylphenyl)aminoquinoline). Surprisingly, only the diarylamido/bis(phosphine) PNP system showed any DHBTA reactivity. The specific PNP ligand (bearing two diisopropylphosphino side donors) used in the screen showed DHBTA activity inferior to SiNN. However, taking advantage of the ligand optimization opportunities presented by the PNP system via the changes in the substitution at phosphorus led to the discovery of a catalyst whose activity, longevity, and scope far exceeded that of the original SiNN archetype. Several Ir complexes were prepared in a model PNP system and evaluated as potential intermediates in the catalytic cycle. Among them, the (PNP)Ir diboryl complex and the borylvinylidene complex were shown to be less competent in catalysis and thus likely not part of the catalytic cycle.

published proceedings

  • Chem Sci

altmetric score

  • 5.624

author list (cited authors)

  • Lee, C., DeMott, J. C., Pell, C. J., Christopher, A., Zhou, J., Bhuvanesh, N., & Ozerov, O. V.

citation count

  • 42

complete list of authors

  • Lee, Chun-I||DeMott, Jessica C||Pell, Christopher J||Christopher, Alyson||Zhou, Jia||Bhuvanesh, Nattamai||Ozerov, Oleg V

publication date

  • January 2015